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ABSTRACT10
11

Aims: We propose a gravitational potential method (GPM) as a galaxy structure finder based on the analysis of the12
local gravitational potential distribution derived from a fast and simple algorithm applied to the spatial density13
distribution of galaxy systems.14
Methodology: the GPM is performed in two steps exploratory data analysis: first, we measure the comoving local15
gravitational potential generated by neighboring mass tracers at the position of a test point-like mass tracer. The16
computation extended to each mass tracer of the complete sample provides a detailed map of the negative potential17
fluctuations. The negative gravitational potential is directly dependent from mass density i.e., deeper are the potential18
fluctuations in a certain region of space and denser are the mass tracers in that region. Therefore, from a smoothed19
potential distribution, the deepest potential well detects unambiguously an overdensity in the mass tracer distribution.20
Second, using a density contrast criterion we extrapolate from the discovered overdensity, if any, the “bound core”.21
Results: applying the GPM to a complete volume-limited sample of galaxy clusters, a huge concentration of galaxy22
clusters has been identified, but only 35 of them seem to form a massive and bound core enclosed in a spherical23
volume of  51 Mpc radius, centered at  Galactic coordinates l ~ 63°.7, b ~ 63°.7 and at redshift ~ .36. It has a velocity24
dispersion of 1,183 Km/s with an estimated virial mass of 2.67± .80 x 1016 Mʘ.25
Conclusions: the good agreement of our findings compared with those obtained using a different methodology,26
confirms that the GPM proposed as a cluster finder offers a straightforward and powerful as well as fast way to identify27
clustered structures from large datasets.28
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1. INTRODUCTION66
67

Galaxy redshift surveys show that galaxies are spread out in a fairly complicated way, over the so-called Cosmic Web.68
This network consists of the largest non–linear superstructures in the Universe which are interconnected through69
filaments and sheets as expected from the properties of the ΛCDM concordance model. However, is quite common to70
find giant superstructures at the nodes of the Cosmic Web as, for example, the well-known Shapley supercluster. In71
the past several decades, to search for such a superstructures, numerous clustering algorithms based on various72
theories have been proposed. Here, we present a brief survey on the widespread clustering algorithms applied to73
large data set provided by redshift  surveys [1,2,3]. Traditionally galaxy systems of various scale have been selected74
from the cosmic web using quantitative methods, such as the Friends-of-Friends method (FoF) or the Density Field75
method. The FoF method is very common and suitable in searching systems of particles in numerical simulations76
where all particles have identical masses in volume-limited samples. Neighboring galaxies or clusters are searched77
using a fixed or variable linking lengths. Because galaxy systems contain galaxies of very different luminosity, the FoF78
method has the disadvantage that objects of different luminosity or mass are treated identically making difficult a clear79
distinction between poor and rich galaxy systems if their number density of galaxies is similar. The density field80
method overcome these difficulties because luminosities of galaxies are taken into account, both in the search of81
galaxy systems, as well as in the determination of their properties. A variant of the density field method is obtained by82
using cell sizes equal to the defined smoothing radii [4]. Another variant of the density smoothing is the use of the83
Wiener Filtering technique where data are covered by a grid whose cells grow in size with increasing distance from84
the observer as recently applied to the 2dFGRS to identify superclusters and voids by [5]. Adding important85
refinements to that variant as the use constant cell size and constant smoothing radius over the whole sample and an86
appropriate kernel, cell size and smoothing length, [6] identified superclusters in the 2dFGRS. The accomplishment of87
wide–area surveys of galaxies with spectroscopic follow up, such as Sloan Digital Sky Survey (SDSS) [7], allowed for88
the identification of superclusters directly from the large-scale galaxy distribution. Recently, from the SDSS–DR7 main89
and LRG samples [8], the largest catalogue of superclusters (SCLCAT hereafter) has been constructed by [9] using90
the density field method. In such catalogs, superclusters are operationally defined as objects within a region of91
positive galaxy density contrast and thus are subject to a certain degree of arbitrariness in the parameter selection92
[10]. For example, the method recently developed by [9] detects superstructures within the luminosity density fields of93
the samples identifying overdensities either above local adaptive or fixed thresholds to separate superclusters from94
poorer galaxy systems. It has the same meaning as the linking length in the FoF method. This is the key parameter95
which makes a clear distinction between rich and poor galaxy systems. Our goal is to find superstructures, at all96
distances from the observer until a certain limiting distance. To achieve this goal the selection procedure must be the97
same for all distances from the observer. In this paper, we consider a method capable of detecting large structures in98
a single data set. We observe that galaxy systems aggregate by following basic laws of gravity no matter how different99
they are. Inspired by this simple physics of clustering phenomena, we propose a new clustering detector to make use100
of universality of gravitational  clustering behaviors. The basic idea is to regard data objects as particles with well-101
known mass and position at the present time. We follow an approach recently used to study star-forming gas cores in102
an SPH simulation of giant molecular clouds [11,12]. They define core-finding methods using the deepest potential103
wells to identify core boundaries. Using the prescriptions of the exploratory data analysis [13], this idea can be easily104
adapted to detect over–dense regions studying the distribution of local gravitational potentials defined by the spatial105
distribution of galaxy systems at intermediate redshifts. The close connection of the gravitational potential with the106
matter density field was studied by [14] which described the evolution of the large scale density perturbations using107
the characteristics of the potential field. They confirmed that the relation of the density perturbations to the potential108
established by the theory of gravitational instability is related to the formation of huge scale structures seen in the109
galaxy distribution that is, over–dense regions arise due to a slow matter flow into the negative potential regions. In110
other words, the detection of large scale structures can be carried out simply observing the regions where very deep111
gravitational potentials originate. Following this idea we address our study toward the clustering of galaxy clusters112
using a complete volume-limited cluster sample extracted from the GMBCG cluster catalog [15]. A two-step analysis is113
performed as follows: first, by an explorative investigation of the distribution of the local gravitational potentials114
measured at the position of each sampled cluster taken one at a time as a test-particle. Then, assuming that the115
deepest potential represents the center of a cluster concentration, we apply a clustering algorithm based on the116
“density contrast criterion” [16] in order to identify its cluster memberships. The paper is organized as follows: in117
Sect.2 we introduce the gravitational potential-based method. In Sect.3 we demonstrate how the method can be easily118
applied to a complete cluster sample studying in detail the region where the deepest gravitational potential is119
measured and describe the assumed criterion to identify the bound core of the cluster concentration which is120
compared with the findings of the SCLCAT. In Sect.4 we discuss various issues addressed by our study and the121
conclusions are drawn.122

123
2. THE GRAVITATIONAL POTENTIAL-BASED METHOD (GPM)124

125
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The very slow evolution of the spatial distribution of large scale structures allows to investigate the distribution of126
potential fields to explain properties of the matter distribution at the present time. Here, we perform an elementary127
numerical simulation to demonstrate the close links of the spatial distribution of matter density with the potential128
distribution. To simplify the demonstration, we adopt a simple toy model assuming: i) the mass distribution is129
represented by point like masses placed in a Bravais lattice with periodic boundary conditions where the unit cell is a130
cube (all sides of the same length and all face perpendicular to each other) with a point like mass  at each corner. The131
unit cell completely describes the structure of the space, which can be regarded as a finite repetition of the unit cell.132
We restrict the present simulation to a cubic lattice with a side length of 10l and a side length of the unit cell equal l133
(corresponding to 1,000 corners/points); ii) each point lies at positions (x, y, z) in the Cartesian three-space (where x,134
y and z are integer multiples of l); iii) all points have the same mass m so that, within the cubic lattice the mass135
distribution is perfectly uniform.  Now, it is well-known that gravity is a superposable force which implies that the136
gravitational force exerted on some test mass by a collection of point masses is simply the sum of the forces exerted137
on the test mass by each point mass taken in isolation. It follows that the gravitational potential generated by a138
collection of point masses at a certain location in space is the sum of the potentials generated at that location by each139
point mass taken in isolation. Hence,  if within a spherical volume jV , centered on a generic test-particle j at position140
vector jd from the observer, with a fixed radius VR , there are

jV
N point mass im ),....,1(

jV
Ni  , located at141

position vectors id (from the observer), then the gravitational potential generated at position vector jd is given by the142

well-known equation  
1

,,1




 
jV

j

N

Vijii
jiij ddmG where G is the gravitational constant. Repeating the calculation143

for each point mass at jth position of the cubic lattice, we provide the whole j distribution. The value of potential is144
always negative, denoting that the force between particles is attractive. According to equation of the potential, the145
attractive interaction between objects decreases with distance and becomes 0 when the distance is greater than VR146
assumed large enough so that masses outside jV should have little influence on the potential determination (we will147
discuss this assumption later). If we assume for simplicity VR = l , for the geometric properties of our Cubic lattice148
system, each point mass has

jV
N = 6 nearest neighbors at a distance l but external points i.e., the points lying on the149

external faces, edges and corners of the cubic lattice (wherein they have 5, 4 and 3 nearest neighbors, respectively).150
Note that we will not measure j at the positions of such external points because of evident incompleteness effect.151
Under these assumptions, the calculation of j will turn out constant at each position j i.e., the j distribution is152
perfectly flat as expected from a uniform mass distribution and no potential wells will appear. We consider now a153
perturbation on the perfect lattice. If we create an artificial clump of point masses modifying the number density within154
the spherical volume of radius l centered on the central point P(5l, 5l, 5l), for example adding 6 new point masses at155
l/2 around P and remaking the calculation, we will show that this clump influences locally the potential distribution. As156
expected, the contour plot of the j distribution of Fig. 1 shows the potential well centered on P.157
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Fig.1 – Contour plot of the potential distribution in the (x,y)-projection. The potential well centered on P159
(5l,5l,5l) is shown. It shows the most negative j provided by the artificial clump obtained adding 6 new160
point mass at l/2 around P.161

162
The astrophysical meaning of such elementary simulation can be summarized in a straightforward concept: denser is163
a clump of celestial bodies (assumed as mass points) embedded in homogeneous and isotropic background and164
deeper is the corresponding gravitational potential well. The deepest of the potential wells identifies unambiguously165
the densest clump of a mass density distribution. Obviously, to apply this potential method to real data space, each166
data object should be regarded as a particle with the proper mass. The proposed method  provides relevant167
advantages: i) it enables the identification of clustered structures based on dynamical principles by knowing positions168
in space and individual masses of a complete volume-limited sample of celestial bodies; ii) the gravitational potential169
distribution is smoother than the density distribution since the contribution to local potential fields due to small density170
fluctuations is irrelevant and iii) it does not require any  threshold to be set overcoming the problem of defining171
arbitrary density thresholds in the clustering analysis (see Sect. 5). However, some misunderstandings may arise from172
very close objects which can measure very deep potential wells due to the inverse dependency of j on the spatial173
separation.  Since we are not interested in detecting small and isolated structures (cluster pairs or triplets, to174
overcome this problem we calculate the mean potential field

j
 at the position j and obtained averaging all 175

located within jV . Undesirable outliers are flattened providing a smoothed evaluation of the potential field and a more176
reliable signal in detecting huge structures.177

178
3.  APPLICATION179

180
3.1. The data181

182
In gravitational studies, the use of cluster samples overcome some of the problems faced by galaxy samples since183
clusters are luminous enough for samples to be volume-limited out to large distances and trace the peaks of the184
density fluctuation field although the  spatial distribution only sparsely sample the underlying density field. Besides,185
cluster mass can be quickly estimated offering a fundamental advantage which have a direct effect on the gravitational186
The astrophysical meaning of this elementary simulation can be summarized in a straightforward concept: denser is a187
clump of celestial bodies (assumed as mass points) embedded in homogeneous and isotropic background and deeper188
is the corresponding gravitational potential well. The deepest of the potential wells identifies the densest clump of the189
mass density distribution. Herefore, a complete volume-limited galaxy cluster sample is extracted from the GMBCG190
optical cluster catalog [15] derived from the SDSS DR7 survey data [8] in redshift space, using coordinates of the191
brightest cluster galaxy (BCG) as the origin. As mentioned in their work, the Authors have developed an efficient192
cluster finding algorithm named GMBCG method to identify the BCG plus red sequence galaxies with a spatial193
smoothing kernel to measure the clustering strength of galaxies around BCGs. This provided a catalog of over 55,424194
rich galaxy clusters in the redshift range .1 < z < .55. The catalog is approximately volume limited up to redshift z = .4195
and shows high purity and completeness when tested against a mock catalog, or compared to the well-established196
cluster catalog derived from the SDSS DR6 [17 WHL hereafter]. From the GMBCG cluster catalog, we select a cluster197
sample belonging to a complete volume-limited spherical  shell constrained by the galactic coordinates 0° < l < 360°198
and 60°< b < 82° and, a radial thickness of .1 < z < .4. Using information on z and the Galactic coordinates l and b, for199
each cluster we determine the comoving radial distance d where the metric is defined by the ΛCDM cosmological200
parameters: 0H = 70 Km s-1Mpc-1, m = .28 and  = .72.201

202
3.2. Simplifying assumptions:203

204
i) the GPM measures the local gravitational potential generated by neighboring masses at the position of a point-205
mass taken as a test-particle on the assumption that the gravitational potential is time-independent;206
ii) an assumption concerning the relation between luminous and dark matter should be made. The most simplest one207
is that galaxy clusters trace the peaks of the underlying matter density field, i.e., the galaxy cluster density is linearly208
biased with respect to the dark matter density. The exact relationship between the cluster power spectrum and the209
dark matter power spectrum is well understood theoretically [18], and this relationship or biasing is a function of cluster210
mass. Then, we may reasonably assume that fluctuations of the gravitational potential generated by the galaxy cluster211
distribution also reflect those in the full matter distribution;212
iii) there is the well-known problem to find a finite solution of j for infinite number of gravitating masses. To213

overcome this problem in our case, we need to assume the form of the spatial distribution of these masses. By214
considering that at the position of each cluster, the gravitational potential is mainly influenced by its nearest neighbors215
and much less by other distant masses, we assume a simplified version where a superstructure (clusters of clusters)216
are approximated by a system of point-like masses (clusters) forming a gravitationally bound system. In this case, we217
consider such a system as a point-like mass concentrated in its center of mass, which do not interact gravitationally218
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with each other. Further, we assume that this system is surrounded by an empty sphere of fixed radius VR embedded219
in a uniform background. Such supposed segregation provides the finiteness of the gravitational potential at any test220
point inside the sphere but outside where the potential vanishes. Then, we assume VR = 80 Mpc which is capable of221
incorporate the characteristic scale of superclusters i.e. ~ 100-150 h-1Mpc [9] and the major share of the gravitational222
influence exerted on a test cluster by the nearest neighbors (a massive cluster placed beyond VR has a tiny223
gravitational influence equivalent to that of a close single galaxy) and, large enough to avoid the shoot noise error;224
iv) we do not take into account the bias affecting high photometric redshift measurements due to relativistic effect225
since it has been found negligible on the scales of interest herein [19]. Therefore, in the error analysis, we consider226
only the redshift error given in the GMBCG cluster catalog which does not exceed the 10% [15].227
v) if a spherical volume jV centered at the cluster position j overlaps the boundaries of our volume-limited cluster228
sample, the measured j is removed to avoid edge effects in the computation;229
vi) Cluster mass is not directly available from the catalog, so that we must overcome this major problem with a quite230
questionable assumption: contrary to the cluster mass, the cluster richness may be reliably predicted allowing its use231
as a proxy for mass (e.g., [20]). However, even if it could be defined precisely for the observational sample under232
consideration, its use should be taken with care since richness vary depending upon survey characteristics and cluster233
identification methods. Therefore, we need a richness-mass relation which best fits the GMBCG dataset. From the234
WHL cluster catalog, [21] determined a richness-mass relation for galaxy clusters calibrated using accurate X-ray and235
weak-lensing mass determinations of a complete sample of clusters defined within .17 < z < .26. The substantial236
agreement of the richness classification provided by the GMBCG catalog with that of the WHL catalog for objects in237
common allows us to adopt that richness-mass relation to determine the cluster mass of our sample.238

239
3.3 Errors on j240

241
Much of the uncertainty concerning the evaluation of j comes from the determination of the cluster mass (which is242
not observable) as a function of the abundance of the cluster members (richness). The assumed 30% error estimation243
of im given by [21 their Eq.4] becomes somewhat arbitrary and poorly determined due to the larger redshift range (z244
~ .4) of our sample than that used by [21]. Of course, this assumption is quite questionable because it is well known245
that the slope of the mass function varies with scales. However, it is worth mentioning that we are dealing with an246
“exploratory” analysis where a precise mass determination is desirable but not mandatory. In any case, we quantify247
the error affecting the determination of  using a Monte-Carlo simulation based on the resampling technique [22].248
For each data point entering in the calculation of  we assume a Gaussian error distribution on distances with σ as249
established by [15] and masses by [21]. From these distributions we can now randomly sample new data points to250
estimate the simulated  . Repeating this resampling task 10,000 times, we get a distribution of the simulated data251
from which we can then infer the uncertainty given by the standard deviation. We  find that the estimated standard252
error for  is ~ 32% while the error for

j
 is reduced by a factor N1 (N =number of  measured within jV ).253

254
3.4. Finding cluster concentrations255

256
As stated in Sect.2, when an idealized sample of mass tracers has a perfect uniform distribution, the map of the257
gravitational potential fields is expected to appear uniform, without wells. In a real sample however, even if deviations258
from that uniformity should be tiny at large scales as predicted by the Cosmological principle, at intermediate redshift,259
deviations are expected to be relevant and the influence of such anisotropies should create extended and deep260
gravitational potential wells. It follows that an extreme minimum in the

j
 distribution is the key measurement to261

detect a huge overdensity in the spatial distribution of our cluster sample. This can be clearly seen in the most262
negative region of the potential distribution of Fig. 2. The isolines of the potential distribution are roughly elliptical for263
very deep wells, and they become more and more complicated near the zero level as expected for random fields. The264
point P shows the deepest

j
 = -1.715 x 106 (Km/s)2 located at Galactic coordinates l ~ 62°.7, b ~ 63°.1 and z ~265

.367. However, from the visual inspection of the Fig. 2, close to the deepest well at P appears a secondary very deep266
well indicating another cluster concentration. Curiously, they form a binary-like system lying in the same redshift range267
of 0.34 < z < 0.37 where they centers are separated by more than 180 Mpc, prefiguring two distinct cluster268
concentrations as part of a huge overdensity already detected in the SCLCAT (see Sect.5). However, for the setting269
limits of this study we take into account only the cluster concentration identified by the deepest well (measured at the270
position P of Fig.2).271
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272
Fig.2 – Contour plot of the

j
 distribution in the (l,b)-projection. At the point P (l=62°.7, b=63°.1, z=.367),273

the position of deepest
j

 = -1.715 x 106 (Km/s)2 is shown. Note also the large chain of overdensities274
around P (see Sect. 3.7.).275

276
3.5. The bound core of the detected cluster concentration277

278
To identify unambiguously the memberships of a hypothetical bound core of the detected cluster concentration is very279
difficult since they are not yet fully formed, virialized and clearly separated from each other. Generally, these280
structures have been defined by quite arbitrary criteria, mostly on the basis of a statistical algorithms like percolation,281
Friend of Friends code and density threshold. Here we adopt the radial density contrast criterion proposed by [15]282
even if, one could replace this algorithm with entirely different density criteria. They assure an accurate process to283
constrain a massive overdensity with respect to background using simulations in ΛCDM cosmology and establish a284
criterion based on the application of the spherical collapse model to constrain regions enclosed by a spherical shell285
that eventually evolve into virialized systems working out a lower density limit for gravitationally bound structures.  This286
limit  is  based on the density contrast that a spherical shell needs to enclose to remain bound to a spherically287
symmetric overdensity. If c is the cluster mass density enclosed by the critical shell and bck is the background288
density (given by mcrit  where crit is the critical density of the Universe), the mass density enclosed by the last289
bound shell of a structure must satisfy the density threshold  bckcc  8.67 (note that in [15], c = 7.88 due to290

 = .70 instead of .72 adopted in the present study). All density parameters are determined in unit of Mʘ Mpc-3 . To291
apply the density criterion, we simply assume that the core of the cluster concentration is defined down to the deepest292
potential well which it shares with neighboring objects. In this scheme the test cluster where the deepest gravitational293
potential is measured forms the head of the structure and the center of mass of the densest parts of the cluster294
concentration. Then, we calculate the density contrast parameter nsph, for n concentric spheres with increasing295
radius until the condition nsph, < c = 8.67 will be satisfied. Subsequently, we  calculate the center of mass of this296
sphere and repeat the process iterating until the shift in the center between successive iterations is less than 1% of297
the radius. With the final center of mass, we identify the angular position, radius and cluster memberships of the298
bound spherical region corresponding to the core of the cluster concentration. In Fig.3 the radial density contrast299
profile is apparent. It shows a cusp constrained within 10 Mpc radius from the center while in the outer part it gradually300
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Fig.3 - Plot of the radial density contrast profiles obtained from the application of the clustering algorithm to305
identify bound core of the cluster concentration. The intersection with the horizontal line showing the limit δ =306
8.67 of the density contrast criterion identifies the radius of the critical shell.307

308
The identified bound core lies at Galactic coordinate l=63°.71 and b=63°.72 or J2000 coordinate RA = 14h 46m 18s309
and Dec = 37° 37' 40" (J221°.54+37°.64 in decimal degrees) and z ~ .36. It is assembled by 35 clusters enclosed in a310
sphere of 51 Mpc radius. The main properties of its cluster members are summarized in Table 1 as follows: in Col.1,311
the GMBCG-ID J2000 coordinates in decimal degrees; Col.2 and 3, the photometric redshift and richness class,312
respectively (these columns are taken from the GMBCG cluster catalog); Col.4, the cluster mass estimation obtained313
from the richness-mass relation of [21]; Col.5, the gravitational potential

j
 .314

Table 1. Properties of the cluster members315

GMBCG ID z
R M

1014Msun

‹Ф›
106(Km s-1)2

GMBCG J219.58196+37.61495 0.358             13                    1.43 -1.443316
GMBCG J219.58832+38.09427 0.352               8                    0.67 -1.444317
GMBCG J219.64068+36.67152              0.350             12                    1.27 -1.408318
GMBCG J219.84475+38.54932 0.357             13                    1.43 -1.428319
GMBCG J220.29901+37.53316              0.345             15                    1.79 -1.43320
GMBCG J220.34301+36.96806 0.362             12                    1.27 -1.52321
GMBCG J220.85463+36.65632 0.364             22                    3.24 -1.602322
GMBCG J220.90808+36.73450 0.365 8                    0.67 -1.611323
GMBCG J220.91481+35.24239 0.353               9                    0.81 -1.412324
GMBCG J221.03525+35.79696 0.345             17 2.17 -1.391325
GMBCG J221.06604+35.95363              0.358             62                  16.15 -1.537326
GMBCG J221.11459+35.85098              0.358             19                    2.58 -1.524327
GMBCG J221.18593+35.36778 0.348               8                    0.67 -1.426328
GMBCG J221.19438+36.16468              0.352             20                    2.80 -1.484329
GMBCG J221.31667+36.44627              0.343             50                   11.57 -1.423330
GMBCG J221.47047+35.61850 0.362             18                     2.37 -1.554331
GMBCG J221.60125+37.98198              0.350             28                     4.71 -1.527332
GMBCG J221.62931+38.02956              0.356             27                     4.45 -1.595333
GMBCG J221.65575+38.10294              0.353             49                   11.22 -1.596334
GMBCG J221.68131+37.99997              0.341             18 2.37 -1.418335
GMBCG J221.73575+37.21649              0.352             38                     7.56 -1.5336
GMBCG J221.88634+39.25153 0.351             14                     1.61 -1.459337
GMBCG J222.05890+35.19966              0.353               8                     6.76 -1.463338
GMBCG J222.13249+35.47027              0.355             11                    1.11 -1.501339
GMBCG J222.15362+37.98939              0.359             56                   13.79 -1.633340
GMBCG J222.25885+38.00825              0.362             11                     1.11 -1.653341
GMBCG J222.44332+37.31708 0.367             34                     6.36 -1.715 deepest342
GMBCG J222.46480+37.40898              0.347             13                     1.43 -1.555343
GMBCG J222.46816+37.58336              0.354             19                     2.58 -1.603344
GMBCG J222.49434+38.09762              0.356             23                     3.47 -1.616345
GMBCG J222.70127+35.63375              0.359               9                     0.81 -1.566346
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GMBCG J222.77598+38.55925              0.347               8                     0.67 -1.566347
GMBCG J222.92370+38.06561 0.356              14                    1.61 -1.644348
GMBCG J223.50442+35.82607              0.354              26                    4.20 -1.61349
GMBCG J223.64751+37.60505              0.358 17                    2.17 -1.681350

351
In Fig. 4, we show the (l,z)-polar projection of our volume-limited cluster sample, displaying only the 8348 galaxy352
clusters where at their j position

j
 has been measured (small black dots). The 35 cluster members of the bound353

core of the cluster concentration identified by the deepest potential well are also shown (large black dots).354
355
356

.357
358

Fig.4 - The (l,z)-polar projection of our volume-limited cluster sample. The core membership listed in Table 1359
is outlined with large black dots.360

361
362

3.6. Quantifying the virial mass of the bound core363
364

As a first approximation, a mass estimation is obtained by summing up the individual cluster masses which yields a365
value of 1.23 x 1016 Mʘ. Of course, the total mass is expected to be considerably larger than this, because lower mass366
as field galaxies are expected to contribute significantly to the total. The lack of lensing and X-ray data prevents the367
use of accurate mass estimators forcing us to use less accurate mass estimator based on kinematical data as, for368
example, the virial mass estimator based on the virial theorem. This estimator is applied under the assumption of369
dynamical equilibrium of the system, an assumption quite questionable for large scale structures because many370
effects like the halo asphericity, the secondary infall or the lack of the virial equilibrium may affect heavily the result.371
However, according to [23], this estimator has the advantage of providing a "conservative" evaluation as372
demonstrated by simulations where the cluster virial mass estimations, on average, turn out 20% underestimated.373
Besides, this result was also confirmed by [24] which, on the basis of 10,000 Monte Carlo simulations, demonstrated374
that at least 87% of the virial mass estimations are below the true mass. According to [25] which estimated the mass375
of the Corona Borealis supercluster we use the equation 13  GRM virvvir  (see also [26]) where virR is estimated376
as in [27] and the line-of-sight velocity dispersion in the center of mass frame is computed using the prescriptions of377
[28]. Then, we find v =1,183 Km/s and virM = 2.67±0.80 x 1016 Mʘ which is a factor of ~ 2 more massive than the378
individual mass summation. The estimation of the 1- error of virM has been calculated according to the resampling379
technique described in Sec. 2.3(vii). To better appreciate the properties of the  supercluster, we make a comparison380
with the properties of one of the most massive structures found in the local Universe: the Shapley supercluster (SSC).381
A detailed study of the SSC was performed by [29] establishing that SSC is composed of 21 clusters within a sphere382
of ~ 50 Mpc radius and a total mass of 4.4±0.44 x 1016 Mʘ. In comparison, our supercluster shows almost the same383
extension but is less massive than the SSC in spite of having a more numerous cluster population (actually, looking384
over the richness class of each object listed in Table 1, one can easily recognize that many of them look like galaxy385
groups rather than clusters).386
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387
3.7. Comparison with the SCLCAT388

389
The volume occupied by our cluster sample has been studied by [9] and their results are reported within the SCLCAT.390
A first glance in the SCLCAT we note a giant overdensity detected at the lowest density limit of 2.20 and identified as391
ID=226+034+0359 (RA+Dec+z) composed of 6,962 galaxies with a box-diagonal of 2,162 Mpc h-1 which corresponds392
to the large and most negative region appearing around the point P in Fig. 2 confirming the fair agreement between393
the two clustering methods. In the SCLCAT, at higher density limits, this huge overdensity fragments in several denser394
structures. We find a tight correspondence of our cluster concentration with the supercluster ID=222+037+0357395
identified at the density limit of 5.40 and composed of 91 galaxies with a box_diagonal of 178 Mpc h-1.  The396
comparison between of the angular positions of the two centers of the structures gives a substantial agreement even if397
our cluster concentration is segregated in smaller and denser volumes. Taking into account that either the SCLCAT398
and the GMBCG catalogs, are both derived from the SDSS DR7 survey, the observed discrepancies may be399
attributed to the different methods used in the process of identification: first, our analysis is based on the hierarchical400
chain: clusters→superclusters i.e. the GMBCG cluster catalog is used as a collection of point-mass tracers, while the401
SCLCAT is based on the chain: galaxies→superclusters i.e. the galaxy sample is used to search for galaxy402
overdensities, identified directly as "superclusters" within regions of positive density contrast from low to high density403
thresholds. Second, a general problem of the modern hierarchical data clustering algorithms is that clustering quality404
highly depends on how certain parameters are set. What makes the situation even more complicated is that optimal405
parameter setting is data dependent. As a result, it may happen that different parts of a given data set require different406
parameter  settings for optimizing clustering quality that, on the contrary, applying a global parameter setting to the407
entire data set may compromise the final result. Thus, if a selection effect affects clustering algorithms, it may depend408
on a certain degree of arbitrariness in the parameter selection. In any case, the substantial agreement between our409
findings and the SCLCAT counterpart confirms the reliability of our GPM in the clustering analysis.410

411
3.8 Some remarks412

413
Fig. 1 shows two extended minima in the potential distribution of the cluster sample segregated in tight redshift range414
between .34 < z <.37 . The sources of that potential wells are two close but separated massive cluster concentrations.415
The reason of this mass segregation is presently unclear, but it  may carry important cosmological implications which416
requires a deeper analysis since it detects an alignment of high density regions in the cluster distribution situated in417
the same redshift range. Such a coherent cluster segregation seems to be in tension with the theoretical expectations418
of the Cosmological principle which predicts an ever increasing matter homogeneity toward larger scale i.e., in a419
perfect homogeneous background the gravitational potential fields smooth toward uniformity as well as the local420
gravitational potentials should tend to a common energy. However, we cannot exclude the hypothesis that the421
observed mass segregation may be an artifact due to an unknown bias in the data. It is thus necessary to be cautious422
in interpreting the consequences of our finding in terms of a full 3D cluster distribution since the GMBCG catalog was423
compiled using photometric redshift and there are not convincing proofs that allows to overcome the suspect that large424
uncertainties in the measurements may affect our results. In fact, relevant discrepancies were found  by [30] (see their425
Fig.5) superimposing a window of the HectoMAP (based on spectroscopic data) on the corresponding part of the426
GMBCG cluster catalog where  many GMBCG clusters do not match the spectroscopic counterpart positions.427
Besides, [9] report that the weighting factors of their clustering algorithm used to derive the SCLCAT are too high for428
the highest distances, which cause densities that are too high at the farthest edge of the field. Evidently, if the429
GMBCG catalog suffers of similar bias and large uncertainties in the photometric data, our result may be incorrect. On430
the other hand, the data used in the present study were derived by two teams [14,17] applying different clustering431
algorithms to the SDSS data. However, the derived cluster catalogs show a fair concordance among angular432
positions, redshifts and richness classification for 22,000 objects in common [14]. Besides, both purity and433
completeness of the above catalogs were compared by [31] with their new catalog of 55,121 groups and clusters (also434
derived from the SDSS DR7) obtaining a substantial agreement and comparable quality. Then, if we can reasonably435
assume that the SDSS database itself is unaffected by large selection effects, unlikely systematic errors due to data436
processing may affect the GMBCG catalog concluding that the observed mass segregation hardly could be interpreted437
as an artifact. However, the discrepancies claimed by [30] are robust enough to preclude any conclusion as long as438
accurate spectroscopic data will confirm our findings. If so, the discovered binary system would turn out one of the439
most massive concentrations of galaxy clusters detected at intermediate redshift and would have a direct440
cosmological implication since their estimated masses seem to be in tension with the allowable locations predicted in441
the mass-redshift plane by the ΛCDM model [32].442

443
4. CONCLUSIONS444

445
In this work, we explore the use of a gravitational potential-based method as a clustering finder, focusing its446
application on a volume-limited cluster sample extracted from the recent GMBCG cluster catalog. We adopt the  three-447
dimensional framework which enables us to investigate the relation between the local potential distribution  and the448
volume overdensities. To identify large cluster concentrations, the analysis is performed in two steps: 1) we measure449
the comoving local gravitational potential generated by neighboring cluster masses inside fixed spherical volume450
centered at the position of each sampled cluster taken one at a time as a test particle. The computation extended to451
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each cluster of the selected sample provides a detailed map of the negative potential fluctuations. The deepest452
potential well identified in the potential map detects unambiguously the cluster overdensity in the cluster distribution.453
2) a density contrast criterion has been applied to constrain the bound core of such  overdensity. Using the454
gravitational potential to identify clustered structures  is advantageous because it enables a cluster finder based on455
gravity theory where the local gravitational potential is computed from volume density and identified from the contours456
of the projected surface of the potential distribution. Being gravity a long range force, the distribution of the potentials457
is smoother than the density distribution enabling us to constrain  overdensity boundaries with a clear physical458
meaning i.e. clustered structures are identified by very deep fluctuations in the global potential distribution. Besides, it459
shows much less complexity in comparison with conventional clustering algorithms that require parameter tuning. It460
allows refinements or modifications, for example, if one needs to study the clustering properties of cluster pairs,461
triplets or small groups,  a contour plot of the local potential distribution j is more appropriate rather than the462

smoothed potential fields
j

 used here to detect large structures. Therefore, we may conclude that the proposed463
GPM offers a promising  cluster finder suitable for application to large datasets. As an example, we have applied our464
method to a complete sample of galaxy clusters as mass tracers. Mapping the gravitational potential distribution, we465
have found that the deepest potential well is generated by a huge concentration of galaxy clusters. It has a bound466
core of 35 galaxy clusters enclosed in a sphere of 51Mpc radius is located at l ~ 63°.7, b ~ 63°.7, and redshift z ~ .36467
with  velocity dispersion of 1,183 Km/s and an estimated virial mass of 2.67± .80 x 1016 Mʘ. The good agreement of468
our findings compared with those obtained using a different  methodology, confirms that our GPM offers a469
straightforward, powerful as well as fast way to identify clustered structures from large datasets. The uncertainty470
affecting our result is mainly due to the richness-mass relation adopted here. Therefore, the major refinement471
expected to improve the basic GPM outlined here is to reduce the scatter between the observable (richness) and the472
predicted quantity (mass). This can be achieved checking that richness-mass relation hold for an optically selected473
cluster sample compared with X-ray or lensing selected counterparts and, measuring how the relation scales towards474
high redshift.475

476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515



UNDER PEER REVIEW

11

516
517
518

REFERENCES519
520

1. Martinez V, Saar E. Statistics of the Galaxy Distribution, Chapman and Hall, London, 2002521
2. Jang W, Hendry M. Cluster analysis of massive datasets in astronomy. Stat. Comput. 2007, 17, 253522
3. Fu B. Algorithms for Large-Scale Astronomical Problems. Doctor of Philosophy, Computer Science Department,523

Carnegie Mellon University, 2011.524
4. Basilakos S, Plionis M, Rowan-Robinson M. PSCz superclusters: detection, shapes and cosmological implications.525

2001, MNRAS, 323, 47526
5. Erdogdu P, Lahav O, Zaroubi S, Efstathiou G, Moody S, Peacock J et al. The 2dF Galaxy Redshift Survey: Wiener527

reconstruction of the cosmic web. 2004, MNRAS,352, 939528
6. Einasto J, Einasto M, Tago E, Saar E, Hütsi G, Jõeveer M et al. Superclusters of galaxies from the 2dF redshift529

survey. I. The catalogue. 2007, AA, 462, 811530
7. Stoughton C, Lupton RH, Bernardi M, Blanton MR, Burles S, Castander FJ et al. Sloan Digital Sky Survey: Early531

Data Release. 2002, AJ, 123, 485532
8. Abazajian KN, Adelman-McCarthy JK, Agüeros MA, Allam SS, Allende Prieto C, An D et al. The Seventh Data533

Release of the Sloan Digital Sky Survey. 2009, ApJS, 182, 543534
9. Liivamagi LJ, Tempel E, Saar E. SDSS DR7 superclusters. The catalogues. 2012, AA, 539,80535
10. Costa-Duarte MV, Sodre Jr L, Durret F. Morphological properties of superclusters of galaxies. 2011, MNRAS,536

411,1716537
11. Smith RJ, Clark PC, Bonnell IA. Fragmentation in molecular clouds and its connection to the IMF. 2009, MNRAS,538

396, 830539
12. Gong H, Ostriker EC. Dense Core Formation in Supersonic Turbulent Converging Flows. 2011, ApJ, 729, 120540
13. Tukey JW. Exploratory Data Analysis, Addison-Wesley, Reading, 1977541
14. Madsen S, Doroshkevich AG, Gottlober S, Muller V. The Cross Correlation between the Gravitational Potential542

and the Large Scale Matter Distribution. 1998, AA, 398, 1543
15. Hao J, McKay TA, Koester BP, Rykoff ES, Rozo E, Annis J et al. A GMBCG Galaxy Cluster Catalog of 55,424544

Rich Clusters from SDSS DR7. 2010, ApJS, 191, 254545
16. Dunner R, Araya PA, Meza A, Reisenegger A. The limits of bound structures in the accelerating Universe. 2006,546

MNRAS, 366, 803547
17. Wen ZL, Han JL, Liu FS. Galaxy Clusters Identified from the SDSS DR6 and Their Properties. 2009, ApJS, 183,548

197549
18. Mo  HJ, White SDM. An analytic model for the spatial clustering of dark matter haloes. 1996, MNRAS, 282, 347550
19. Yoo J. General relativistic description of the observed galaxy power spectrum: Do we understand what we551

measure? 2010, Phys. Rev.D, 82, 3508552
20. Tinker J, Kravtsov AV, Klypin A, Abazajian K, Warren M, Yepes G et al. Toward a Halo Mass Function for553

Precision Cosmology: The Limits of Universality. 2008, ApJ, 688, 709554
21. Wen ZL, Han JL, Liu FS. Mass function of rich galaxy clusters and its constraint on σ8, 2010, MNRAS, 407, 533555
22. Andrae R. Error estimation in astronomy: A guide. 2010, arXiv10123754556
23. Cen R. Toward Understanding Galaxy Clusters and Their Constituents: Projection Effects on Velocity Dispersion,557

X-Ray Emission, Mass Estimates, Gas Fraction, and Substructure. 1997, ApJ, 485, 39558
24. Evans NW, Wilkinson MI, Perrett KM, Bridges TJ. New Mass Estimators For Tracer Populations. 2003, ApJ, 583,559

752560
25. Small TA, Ma CP, Sargent WLW, Hamilton D. Results from the Norris Survey of the Corona Borealis Supercluster.561

1998, ApJ, 492, 45562
26. Zapata T, Perez J, Padilla N, Tissera P. The influence of halo assembly on galaxies and galaxy groups. 2009,563

MNRAS, 394, 2229564
27. Merchan ME, Zandivarez A. Galaxy Groups in the Third Data Release of the Sloan Digital Sky Survey. 2005, ApJ,565

630, 759566
28. Danese L, de Zotti G, di Tullio G. On velocity dispersions of galaxies in rich clusters. 1980, AA, 82, 322567
29. Munoz JA, Loeb A. The density contrast of the Shapley supercluster. 2008, MNRAS, 391, 1341568
30. Geller MJ, Diaferio A, Kurtz MJ. Mapping the Universe: The 2010 Russell Lecture. 2011, AJ, 142, 133569
31. Budzynski JM, Koposov S, McCarthy IG, McGee SL, Belokurov V. The radial distribution of galaxies in groups and570

clusters. 2012, MNRAS, 423, 104571
32. Harrison I, Coles P. Testing cosmology with extreme galaxy clusters. 2012,  MNRAS, 421,19572

573
574


